Rechargeable Mg-Ion Batteries Based on WSe$_2$ Nanowire Cathodes

Bin Liu, †,‡ Tao Luo, † Guangyuan Mu, † Xianfu Wang, † Di Chen, * † and Guozhen Shen *,‡

†Wuhan National Laboratory for Optoelectronics (WNLLO) and College of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhu 430074, P. R. China and ‡State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China

ABSTRACT The increasing interest in future energy storage technologies has generated the urgent need for alternative rechargeable magnesium ion batteries due to their innate merits in terms of raw abundance, theoretical capacity, and operational safety. Herein, we report an alternative pathway to a new energy storage regime: toward advanced rechargeable magnesium-ion batteries based on WSe$_2$ nanowire-assembled film cathodes. The as-grown electrodes delivered efficient Mg$^{2+}$ intercalation/insertion activity, excellent cycling life, enhanced specific capacity, and excellent rate capability. We also evaluated the influence of Mg-intercalation behavior on Mg-ion batteries based on WSe$_2$ film cathodes via the first-principles DFT computations. The results reveal the feasibility of using advanced magnesium-ion batteries based on WSe$_2$ film as energy storage components in next-generation optoelectronic systems.

KEYWORDS: magnesium-ion batteries · WSe$_2$ nanowire-assembled film · alternative energy-storage option · superior performance · promising applications

Currently, rechargeable lithium ion batteries have been widely applied in portable consumer electronics and are further expected to power electric vehicles and even to be used in stationary electric-grid harvesting from renewable energy sources.$^{1-15}$ Although successful commercialization of Li ion batteries has greatly promoted technological advancements, it is well-known that the currently available lithium batteries have several drawbacks including limited/unevenly distributed lithium resource, low power density, worries about safety, short service life, and high production cost, which greatly impact their use for next-generation large-scale commercial manufacture of energy storage units.16

Compared to lithium batteries, magnesium batteries have been considered as a future prospective candidate for reversible energy storage and conversion owing to the greater abundance of magnesium resources (1.94%) than lithium (0.006%), more stability of metallic Mg in humid and oxygen environment, higher expected safety and lower relative toxicity, and high specific capacity (2205 Ah kg$^{-1}$).$^{17-22}$ Furthermore, it is of importance primarily that Mg and Li elements have greatly similar chemical properties due to their unique diagonal rule of the Periodic Table of Elements. Therefore, worldwide studies on rechargeable advanced magnesium ion batteries could lead to an alternative pathway to a new energy storage regime.

So far, only a few Mg$^{2+}$ insertion cathodes can illustrate reasonable reversible capacity and short cycle number in the rechargeable Mg battery systems, including MoS$_2$, 17,20,23 Cu$_y$Mo$_x$S$_{2y}$, 24 Mg$_{1.03}$Mn$_{0.97}$SiO$_4$, 25 and TiS$_2$. 26 The major issues for magnesium ion batteries are kinetically torpid reversible Mg$^{2+}$ insertion/extraction and diffusion in Mg-insertion cathodes due to the strong polarization effect of the divalent Mg$^{2+}$ compared with Li$^{+}$. 17,19,20 Among other potential electrodes, WSe$_2$, a layer-structured metal chalcogenide, has gained increasing attention recently owing to its extraordinary characteristics of ultralow thermal conductivity, 27 highly hydrophobic sticky surfaces, 28 and efficient p-type field-effect properties. 29 To date, little attention has been paid to their energy storage features. In addition, although several synthetic routes for WSe$_2$ samples were mentioned, no report has been found on the synthesis of unique 1D WSe$_2$ nanowires by...
utilizing W foil as both tungsten resource and substrate. It is expected that advancements in future storage technology could be gained by incorporating novel WSe2 nanostructured cathodes into advanced rechargeable magnesium ion batteries.

Herein, we report on the discovery of WSe2 nanowire-assembled film/W foil composites as cathodes for next-generation rechargeable magnesium ion batteries. The as-fabricated rechargeable Mg ion batteries composed of WSe2 cathodes and Mg anodes delivered efficient Mg$^{2+}$ intercalation/insertion activity, outstanding cycling life, enhanced specific capacity, and excellent rate capability. Further, we calculated and simulated the crucial parameters for comparison between WSe2 and Mg$_{0.67}$WSe$_2$ in electrochemical processes via first-principles DFT computations, such as the electron density, band structure, mobility, and density of state, evaluating the major merits of these Mg$^{2+}$ insertion-based WSe2 electrodes corresponding to related experiment data. Our findings have provided a technical feasibility of considerable Mg$^{2+}$ intercalation and deintercalation inside the as-synthesized unlimited-potential cathodes, which opens up new opportunities for rechargeable Mg batteries.

RESULTS AND DISCUSSION

WSe2 nanowire-assembled film was synthesized via a chemical vapor deposition (CVD) route from the reaction of Se powder and W foil. Figure 1a shows the drawing of the fabrication process of WSe2 film grown on W foil. From the plot, we can see that Se powders placed at the entrance of quartz tube were separated from W foil at the center of one. When applied a certain temperature, Se powders were evaporated, carried by the N$_2$ gas, and reacted with the tungsten substrate at 900°C to form into WSe2 nanowire film. More details of the synthesis are described in the Experimental Section. The corresponding XRD pattern of the as-obtained samples is illustrated in Figure 1b. All peaks are indexed to the hexagonal WSe2 (JCPDS No. 38-1388) except three peaks from W foil, which indicated the high purity of the as-fabricated WSe2 nanowire-assembled film. Figure 1c inset clearly shows the change of the substrate color,
indicating the deposition of WSe$_2$ samples on the W foil. The morphology of the as-deposited samples was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. Parts c and d of Figure 1 illustrate the SEM images of the as-prepared film on the surface of W foil, showing the deposition of numerous nanowires on the whole foil. Typical nanowires have diameters of ~ 100 nm and ~ 7, as can be seen in the Figure 1d inset.

Figures 1e–f show the corresponding TEM and high-resolution TEM (HRTEM) images of a single nanowire with a diameter of about 100 nm. The clearly resolved lattice fringe is measured to be about 0.65 nm, corresponding well to the (002) plane of WSe$_2$. Combined with the relevant selected-area electron diffraction (SAED) pattern inset, it is concluded that single crystalline WSe$_2$ nanowires are successfully synthesized via the current CVD process.

To measure the electrochemical properties of the as-grown WSe$_2$ nanowire-based electrode, we fabricated coin-shaped cells by assembling magnesium foil (anode), electrolyte, separator, and WSe$_2$ nanowire-based electrode (cathode) into a complete magnesium-ion battery unit and the corresponding diagram was depicted in Figure 2a. The electrolyte used for the Mg battery was prepared via a chemical route according to previous report, and Figure S1 (Supporting Information) displays the reaction equation of electrolyte. Briefly, Mg(AlCl$_2$EtBu)$_2$ was first prepared by mixing proper amounts of Bu$_2$Mg solution (1 M in hexane, Aldrich) and AlCl$_3$Et solution (1 M in heptane, Aldrich) in a 1:2 stoichiometric ratio. Then the prepared Mg(AlCl$_2$EtBu)$_2$ was dissolved in THF solution to form the 0.25 mol g$^{-1}$ Mg(AlCl$_2$EtBu)$_2$/THF electrolyte.

Figure 2b shows the voltage profiles of the WSe$_2$-based electrodes between 0.3 and 3 V at a current density of 50 mA g$^{-1}$ for 160 cycles, revealing the discharge platform is approximately 1.6 V and the decay of specific capacity is very little. Accordingly, Figure 2c displays the cycling performance of these electrodes over 160 cycles. From the plot, we can clearly see that the reversible specific capacity of these electrodes keeps at a quite considerable value around 203 mAh g$^{-1}$ for all of the cycles, showing their high specific capacitance and excellent cycling stability for Mg ion battery application, while the as-prepared WSe$_2$ bulk electrodes that was also evaluated by using the same conditions as the above WSe$_2$ nanowires cathodes displayed significantly inferior cycling performance with even a low capacity retention of 10% after 100 cycles (typical SEM images of WSe$_2$ bulk, as shown in Figure S2).

It reveals that our unique one-dimensional-assembled WSe$_2$ architectures with high stability and numerous active sites/channels may greatly contribute to their electrochemical properties. According to previous report, a unit of Mg$_{0.67}$WSe$_2$ (Mg$_4$W$_6$Se$_{12}$) as stable phase is obtained, which consistent with results of the other Mg-insertion chalcogenide-cathode (Mg$_3$Mo$_6$S$_{12}$). Also, it may be concluded that the total electrochemical processes of our prepared WSe$_2$-based cathodes during
the charge/discharge cycles are expressed as follows:

\[
6\text{WSe}_2 + 4\text{Mg}^{2+} + 8\text{e}^- \rightarrow \text{Mg}_4\text{W}_6\text{Se}_{12} \text{ (cathode)}
\]

\[
4\text{Mg} \rightarrow 4\text{Mg}^{2+} + 8\text{e}^- \text{ (anode)}
\]

\[
6\text{WSe}_2 + 4\text{Mg} \rightarrow \text{Mg}_4\text{W}_6\text{Se}_{12} \text{ (total)}
\]

The corresponding coulombic efficiency (CE) of the WSe\textsubscript{2} nanowire-assembled film and WSe\textsubscript{2} bulk electrodes are shown in Figure 2d and its inset, which is around 98.5% for as long as 160 cycles and 93.8% for 50 cycles, respectively, indicating that the WSe\textsubscript{2} nanowire-assembled film electrodes delivered very more efficient and stable electrochemical behaviors compared to bulk samples. It reveals that these WSe\textsubscript{2} nanowire-based electrodes fit well for various high-performance new storage systems.

To evaluate the rate performance of the WSe\textsubscript{2} nanowire-based electrode, we measured the rate capacity at different current density ranging from 100, 200, 400 to 800 mA g-1 for 50 cycles between 0.3 and 3V, respectively. From Figure 3a, we can see that even at a high current density of 800 mA g-1, the specific capacity is still kept at 142 mAh g-1 (a retention of as high as 83.5%). Besides, a capacity of 168 mAh g-1 at 100 mA g-1 is retained after 40 discharge/charge cycles at various preceding current densities (100, 200, 400, and 800 mA g-1), indicating the very good structural stability of the WSe\textsubscript{2} nanowire-based electrodes. The corresponding CE also reached a high level (~98.8%), indicating an efficient electrochemical activities of the current cathodes (Figure 3b).

Higher charging current densities of 1500 and 3000 mA g-1 were also applied to further evaluate the rate capability of the as-fabricated electrodes, and the results are demonstrated in Figure 3c. The electrodes were found to deliver capacity of 120 mAh g-1 at 1500 mA g-1 and 103 mAh g-1 at 3000 mA g-1 for 50 charge/discharge cycles, illustrating their superior cycling performance and excellent rate capability. Until now, in terms of stability, cycling, and rate capability as critical measurable parameters, our results for these WSe\textsubscript{2} nanowire-assembled film cathodes are clearly superior to the electrochemical features of other reported Mg-insertion materials, as shown in Table S1 (Supporting Information). Inspiring comprehensive performance of these novel WSe\textsubscript{2} electrodes for rechargeable Mg-ion batteries may greatly contribute to further development of desired energy storage components, which may facilitate new growth points of battery industry. Figure 3d vividly represents the operation merits of the current WSe\textsubscript{2} nanowire film cathodes during electrochemical processes. Briefly, the advancements in the current WSe\textsubscript{2} nanowire film cathodes based magnesium-ion battery units might be due to the following reasons: In Figure 3d, we can find that the 3D-composite network architecture composed of WSe\textsubscript{2} nanowire-assembled film (purple layer) and W foil (yellow plane) could greatly enhance effective contact area between the electrolyte (wathet blue area) and numerous nanowires, facilitating magnesium-ion (green small sphere)/electron transport inside active...
materials and diffusion of the electrolyte to show the greatly efficient performance for Mg cells. This WSe₂ nanowire-assembled architecture/W foil matrix can achieve an excellent electronic conductivity due to the WSe₂ nanowires directly grown on the W substrate to form very electrical contact and good adhesion, building up an expressway for charge transfer in total storage system. The unique WSe₂ nanowires with one-dimensionality are beneficial to the free insertion/extraction of Mg²⁺ among layered WSe₂, which also shorten the charge transfer pathway and lower the exchange resistance for the magnesium ions between active functional materials and electrolyte. In addition, the anodic stability of Mg(AlCl₂BuEt)₂ is clearly superior to that of the other electrolytes. This electrolyte does not develop strongly passivating films on the Mg surface, and the deposition/dissolution of Mg is almost 100% reversible. As-prepared Mg(AlCl₂BuEt)₂/THF has been regarded as a greatly suitable and efficient electrolyte because it may partially reduce the polarization effect, make maximized Mg-ion insertion behavior, and guarantee reasonable cycling performance of Mg-ion batteries. Finally, according to the above XRD pattern and HRTEM image, it can be revealed that the high-crystallinity and purity resulting samples are achieved by high temperature CVD process, which contributes to their corresponding excellent performance. Thus, considering these above results, only in this novel storage unit can we obtain desirous advanced features of the magnesium ion batteries.

Toward new-type promising batteries, such as Li—S, Mg ion, and Na ion batteries, their indispensable cycling stability has been paid less attention compared with the existing Li ion batteries. Fortunately, our results here clearly demonstrate the excellent cycling stability of the current WSe₂ nanowire-based electrodes. To give more directly evidence, we also measured the SEM images of the electrode before and after cycled for 80 charge/discharge cycles at 100 mA g⁻¹. As can be seen in Figure 4 and Figure S3 (Supporting Information), the WSe₂ nanowires did not show obvious morphology change, confirming their attractive morphological stability during electrochemical reactions. It is worth mentioning that all of the above effects will undoubtedly make it possible to achieve high-performance future Mg-ion batteries based on the current graphene-like WSe₂ nanowire-assembled film cathodes.

In order to appropriately evaluate the obtained results of the current WSe₂ nanowire-based electrodes, the first-principles density functional theory (DFT) was further applied to analyze the features of the electrode. Figure 5a shows the structural model of the layer-structured WSe₂ intercalated with Mg, where the Mg was found intercalated on two WSe₂ layers. A formula unit of W₁₆Se₃₂ is thus chosen as a representative of a WSe₂ monolayer for the investigation of Mg intercalation and each Mg atom is coordinated by three Se atoms at a distance of 2.5 Å. Figure 5b shows the side view image of the Mg intercalated WSe₂ structure, where every two neighboring layers can form a cycling period in layered WSe₂ structures. The top view image in Figure 5c shows that a single WSe₂ layer is fully intercalated by Mg atoms on both sides and a maximum of four Mg atoms could be inserted on each side of the layer. A formula unit of MgₓWₓSe₃₂ (Mg₀.₆₇WSe₂) is thus selected as a simulation object (marked with a blue rectangle in Figure 5c), corresponding to the above experimental electrochemical results of the WSe₂ cathodes.

Based on the above models, many vital parameters, such as the electron density, the band structure, the mobility, and DOS, were calculated progressively according to the first-principles DFT. In parts d and e of Figure 5, the dotted green boxes of both WSe₂ and Mg₀.₆₇WSe₂ are constructed to form the brillouin zone related to their band structure. The corresponding purple dotted isosurfaces exhibit the electron density features of two compounds. From Figure 5e we can see that the isosurfaces among neighboring Mg₀.₆₇WSe₂ layers not only still keep the respective smooth matrix but also do not stagger or overlap each other when Mg ions were fully intercalated, showing outstanding feasibility and stability of such a structure in the cathode materials and likely facilitating the electrochemical stability in the charge/discharge experiments for these WSe₂ electrodes.
which defaults to the Fermi level. Once intercalated with Mg ions, Mg$_{0.67}$WSe$_2$ was obtained and the band gap of the formed Mg$_{0.67}$WSe$_2$ reduces to 0.02 eV, as shown in Figure 5g, indicating the electrical conductivity of WSe$_2$ changing from semiconductor to almost conductor. To further study the electrical properties of the samples, comparison of the mobility between the two compounds is given in Figure 5h, i. The corresponding 18 data points from two bands in the bottom of the conduction bands of the two compounds are demonstrated in parts f and g, respectively, of Figure 5. Compared to the electron ratio of WSe$_2$, the proportion of electrons can be remarkably increased when Mg ion is fully intercalated into WSe$_2$ to form Mg$_{0.67}$WSe$_2$. As is known, the mobility of electrons is higher than that of holes in the same condition. To get more information about the Mg-intercalation influence on WSe$_2$, the density of state (DOS) of Mg, WSe$_2$, and Mg$_{0.67}$WSe$_2$ were also calculated (Figures S4–6, Supporting Information). The weak peak from the DOS curve of Mg cross the Fermi level (0 eV), as shown in Figure S4 (Supporting Information), indicates its relevant metallic feature. Figure S5 (Supporting Information) shows the DOS curves of WSe$_2$, revealing their obvious semiconductor properties due to the strong peak in ~38 eV and most of the electrons are converged in valence bands. While compared with the DOS curves of WSe$_2$, we find that the several peaks near Fermi level of Mg$_{0.67}$WSe$_2$ moved left, which indicates more electrons are transferred in the lower energy filed and the electron states of being activated are weaker (Figure S6). It indicates that the electrochemical properties of Mg$_{0.67}$WSe$_2$ cathodes tend to be stable, which is beneficial to enhance the performance of Mg$_{0.67}$WSe$_2$ samples for promising magnesium ion batteries. All of the above theoretical and simulation results, together with the experimental results, reveal that the current WSe$_2$ cathodes are suitable candidates for future alternative Mg ion storage units.

CONCLUSIONS

In summary, we presented the synthesis of the WSe$_2$ nanowire-assembled film as binder-free cathodes for...
promising magnesium ion batteries. It is worth mentioning that all obtained results, including both experimental data and theoretical simulations, revealed that the as-prepared WSe₂-based electrodes delivered the unique electrochemical performances, such as efficient Mg²⁺ intercalation/insertion activity, stable specific capacity, outstanding cycling life, and excellent rate capability. Our work opens up a new alternative energy storage option for powering zero emission EV vehicles, portable electronic devices, and photovoltaic devices.

EXPERIMENTAL METHODS

Preparation of the Mg(AlCl₄)EtBu₂/THF Electrolyte. A white solid precipitation formed immediately when the proper amounts of MgAlCl₄, solution (1 M in hexane, Aldrich) and AlEtCl₂ solution (1 M in heptane, Aldrich) in a ratio of 1:2 were mixed at room temperature. After stirred for 24 h, the hexane and heptane solutions were completely evaporated and a proper amount of high-purity tetrahydrofuran (THF) was slowly mixed to form the desired 0.25 mol L⁻¹ solution as Mg-battery electrolyte. The above reactions were performed in an argon-filled glovebox (MBraun, Germany) with oxygen and water concentrations less than 1 ppm.

Synthesis of WSe₂ Nanowire-Assembled Film. In a typical procedure, a polished tungsten foil located at a ceramic boat was directly coated on W foil from the CVD growth. The loading was placed in the upwind low-temperature zone of the tube furnace, and force (10⁻⁵ cm³/min) with oxygen and water concentrations less than 1 ppm. The as-obtained samples were characterized with X-ray diffractometer (XRD; X’Pert PRO, PANalytical B.V.) with radiation from a Cu target (Kα, λ = 0.15406 nm). The morphologies of the samples were observed by field emission scanning electron microscopy (FE-SEM; Sirion 200) and transmission electron microscopy (TEM; Philips CM 20).

Cell Assembly and Electrochemical Characterization. Electrochemical experiments were performed using CR2032-type coin cells with Celgard 2400 membrane as separator and polished magnesium-foil as anode electrode in the voltage range of 0.3–3 V versus Mg/Mg²⁺ at the room temperature. The electrolyte was as-synthesized 0.25 mol L⁻¹ Mg(AlCl₄)EtBu₂/THF. The cathode electrode was binder-free WSe₂ nanowire-assembled film directly coated on W foil from the CVD growth. The loading density of active material on tungsten substrate here was 3–4 mg cm⁻². The cells were assembled in an argon-filled glovebox with oxygen and water contents less than 1 ppm. The electrochemical performances were evaluated on a LAND battery test system (Wuhan, China) at the room temperature.

Computational Methods. Density functional theory (DFT) is a quantum mechanical modeling method used in physics and chemistry to investigate the electronic structure of many-body systems, in particular, molecules. Thus, for our models of WSe₂ and MgₐₓWₙSe₂, the first-principles DFT computations were performed using a plane wave basis set with the projector-augmented plane wave (PAW) 36 to model the ion-electron interaction in the Cambridge Sequential Total Energy Package (CASTEP). The generalized gradient approximation with the PBE 37 functional and a 310 eV cutoff for the plane wave basis set and the convergence in energy and force (10⁻⁶ eV and 10⁻⁴ eV Å⁻¹) were adopted in all of the computations, respectively. The following electronic states were treated as valence: Mg, 3s²3p⁶; W, 5s²5p⁶5d²⁶ (converged in 26 iterations to a total energy of ~972.1662 eV), Se, 4s²4p⁴ (converged in 17 iterations to a total energy of ~256.4674 eV), and W, 5s²5p⁶5d²⁶ (converged in 26 iterations to a total energy of ~1922.2989 eV). Also, 2*1*1 k points, 2.0e⁻⁶ eV/atom SCF tolerance, and max SCF cycles (100) were then used to calculate the electronic band structure. Electronic parameters are listed as follows: number of electrons (376), number of up spins (188), number of down spins (188), and number of bands (188).

Conflict of Interest: The authors declare no competing financial interest.

Supporting Information Available: Preparation of electrolyte for Mg-ion batteries, morphology characterization of WSe₂ bulk, SEM images of WSe₂ nanowire-assembled film after cycling, density of state (DOS) characterization, and comparison of the desired performance between existing WSe₂ cathodes and other reported Mg-insertion electrodes. This information is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgment. This work was supported by the National Natural Science Foundation (51002059, 2101046), the 973 Program of China (2011CB933300), and the Program for New Century Excellent Talents of the University in China (Grant No. NCET-11-0179). Special thanks to the Analytical and Testing Center of HUST and the Center of Micro-Fabrication and Characterization (CMFC) of WNU for using their facilities.

REFERENCES AND NOTES

